Resources

Power the future

PUBLICATIONS

1. Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides.

Li, J.; Liang, H.; Xiao, C.; Jia, X.; Guo, R.; Chen, J.; Guo, X.; Luo, R.; Wang, X.; Li, M.; Rossier, M.; Hauser, A.; Linardi, F.; Alvianto, E.; Liu, S.; Feng, J.; Hou, Y.

Nat. Energy 2024.

2. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer.

Chen, W.; Zhu, Y.; Xiu, J.; Chen, G.; Liang, H.; Liu, S.; Xue, H.; Birgersson, E.; Ho, J. W.; Qin, X.; Lin, J.; Ma, R.; Liu, T.; He, Y.; Ng, M.-C.; Guo, X.; He, Z.; Yan, H.; Djurišić, A. B.; Hou, Y.

Nat. Energy 2022, 7 (3), 229-237.

3. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering.

Bastiani, M. D.; Mirabelli, A. J.; Hou, Y.(co-first); Gota, F.; Aydin, E.; Allen, T. G.; Troughton, J.; Subbiah, A. S.; Isikgor, F. H.; Liu, J.; Xu, L.; Chen, B.; Kerschaver, E. V.; Baran, D.; Fraboni, B.; Salvador, M. F.; Paetzold, U. W.; Sargent E. H.; Wolf, S. D.

Nat. Energy 2021, 6 (2), 167–175.

4. Efficient Tandem Solar Cells with Solution-Processed Perovskite on Textured Crystalline Silicon.

Hou, Y.; Aydin, E.; Bastiani, M. D.; Xiao, C.; Isikgor, F. H.; Xue, D.-J.; Chen, B.; Chen, H.; Bahrami, B.; Chowdhury, A. H.; Johnston, A.; Baek, S.-W.; Huang, Z.; Wei, M.; Dong, Y.; Troughton, J.; Jalmood, R.; Mirabelli, A. J.; Allen, T. G.; Kerschaver, E. V.; Saidaminov, M. I.; Baran, D.; Qiao, Q.; Zhu, K.; Wolf, S. D.; Sargent, E. H.

Science 2020, 367 (6482), 1135–1140.

5. Managing Grains and Interfaces via Ligand Anchoring Enables 22.3%-Efficiency Inverted Perovskite Solar Cells.

Zheng, X.; Hou, Y.(co-first); Bao, C.; Yin, J.; Yuan, F.; Huang, Z.; Song, K.; Liu, J.; Troughton, J.; Gasparini, N.; Zhou, C.; Lin, Y.; Xue, D.-J.; Chen, B.; Johnston, A. K.; Wei, N.; Hedhili, M. N.; Wei, M.; Alsalloum, A. Y.; Maity, P.; Turedi, B.; Yang, C.; Baran, D.; Anthopoulos, T. D.; Han, Y.; Lu, Z.-H.; Mohammed, O. F.; Gao, F.; Sargent, E. H.; Bakr, O. M.

Nat. Energy 2020, 5 (2), 131–140.

6. A Generic Interface to Reduce the Efficiency-Stability-Cost Gap of Perovskite Solar Cells.

Hou, Y.; Du, X.; Scheiner, S.; McMeekin, D. P.; Wang, Z.; Li, N.; Killian, M. S.; Chen, H.; Richter, M.; Levchuk, I.; Schrenker, N.; Spiecker, E.; Stubhan, T.; Luechinger, N. A.; Hirsch, A.; Schmuki, P.; Steinrück, H.-P.; Fink, R. H.; Halik, M.; Snaith, H. J.; Brabec, C. J.

Science 2017, 358 (6367), 1192–1197.

Other Resources

What is ISOS Stability Protocol?

ISOS is the abbreviation of International Summit on Organic Photovoltaic Stability. The International Electrotechnical Commission (IEC) qualification tests were designed for silicon panels. Emerging PV technologies, like Perovskite Solar Cells (PSCs), require tests tailored to their characteristics. That’s why ISOS is necessary for PSCs.

 

For PSCs, ISOS introduced protocols with four stress factors:

  • Light Exposure: Varied between dark, visible, and UV, either in the dark or at 1-sun equivalent.
  • Temperature: Varied between ambient, 65°C, or 85°C.
  • Ambient Contaminants: Varied between inert, ambient, and controlled humidity.
  • Electrical Bias: Varied between open circuit, maximum power point tracking, or fixed voltage (positive or negative).

ISOS is crucial for assessing the lifespan of perovskite solar modules. Light exposure, temperature, and humidity are the most significant factors influencing the long-term stability of perovskite modules. Therefore, ISOS is divided into five groups:

  • ISOS-D: dark-storage/shelf-life
  • ISOS-L: light-soaking
  • ISOS-O: outdoor testing
  • ISOS-T: thermal cycling
  • ISOS-LT: light-humidity-thermal cycling

The parameter of Maximum Power Point Tracking (MPPT)

For perovskite solar cells, it is essential to subject them to simultaneous exposure to light, high temperature, and high humidity to assess their long-term stability. The degradation rate of perovskite materials under combined light and high-temperature conditions increases exponentially, whereas it appears more stable under individual factors. In real-world scenarios, solar cells often operate in conditions where high temperature and sunlight coincide. Therefore, ISOS-L2 and ISOS-L3 serves as a significant indicator for evaluating whether a perovskite solar module can operate effectively for over 20 years.